Product Code Database
Example Keywords: digital music -psp $95-173
   » » Wiki: Born Equation
Tag Wiki 'Born Equation'.
Tag

Born equation
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

The Born equation can be used for estimating the electrostatic component of Gibbs free energy of of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of methods known as continuum solvation methods).

The equation was derived by .

(2026). 9780716787594, Oxford university press. .
\Delta G =- \frac{N_\text{A} z^2 e^2}{8 \pi \varepsilon_0 r_0}\left(1-\frac{1}{\varepsilon_\text{r}}\right) where:
  • NA = Avogadro constant
  • z = charge of ion
  • e = elementary charge, 1.6022
  • ε0 = permittivity of free space
  • r0 = effective
  • εr = dielectric constant of the solvent


Derivation
The energy U stored in an electrostatic field distribution is:U=\frac{1}{2} \varepsilon_0 \varepsilon_\text{r} \int |{\bf{E}}|^2 dVKnowing the magnitude of the electric field of an ion in a medium of dielectric constant εr is |{\bf{E}}|=\frac{z e}{4 \pi \varepsilon_0 \varepsilon_{r} r^2} and the volume element dV can be expressed as dV=4\pi r^2 dr , the energy U can be written as: U=\frac{1}{2} \varepsilon_0 \varepsilon_\text{r} \int_{r_0}^\infty \left(\frac{z e}{4 \pi \varepsilon_0 \varepsilon_\text{r} r^2}\right)^2 4\pi r^2 dr=\frac{z^2 e^2}{8\pi \varepsilon_0 \varepsilon_\text{r} r_0} Thus, the energy of solvation of the ion from gas phase () to a medium of dielectric constant εr is:\frac{\Delta G}{N_\text{A}} = U(\varepsilon_\text{r} )- U(\varepsilon_\text{r}=1)=- \frac{z^2 e^2}{8 \pi \varepsilon_0 r_0}\left(1-\frac{1}{\varepsilon_\text{r}}\right)


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs